Journalists are invited to attend the meeting, where more than 15,000 attendees are expected. This year's lineup will have many engaging talks and panels, including:
The OFC/NFOEC Web site is http://www.ofcnfoec.org. Also on the site is information on the trade show and exposition, where the latest in optical technology from more than 550 of the industry's key companies will be on display.
SCIENTIFIC HIGHLIGHTS
Red-light metamaterials
Metamaterials make it possible to manipulate light on the nanoscale. They are nanostructured materials made of tiny metallic rings, rods, or strips arranged in such a way as to produce a negative index of refraction, or a situation unique to metamaterials when light is deflected away from an imaginary line passing perpendicularly between air and the material. This property in turn is expected to lead to novel optical devices, such as flat-panel lenses and hyperlenses. These lenses can be used to image objects with a spatial resolution smaller than the wavelength of the illuminating light source, thus circumventing the normal "diffraction limit," which says that a lens cannot produce an image with a spatial resolution better than approximately half the wavelength of the light used to make the image.
Alexander Kildishev will report on optical metamaterial progress at Purdue, including the shortest wavelength light (710 nm) yet achieved for a negative index metamaterial, and the improved design of a cylindrical-shaped hyperlens. One goal in this work is to produce cloaking, rendering an object inside a metamaterial enclosure invisible to outside viewers. But Kildshev says achieving invisibility in the visible portion of the electromagnetic spectrum will be difficult. Shorter range applications of metamaterials, he says, will likely be seen in microscopy, biosensing, and in the harvesting of solar energy. (More information is available at http://cobweb.ecn.purdue.edu/~shalaev/MURI/overview.shtml.)
Optofluidic assembly of microlasers
One of the problems of marrying electronics and photonics is that they are embodied in very different elements. Many photonic components – such as modulators, detectors, switches, and waveguides – can be fashioned from silicon, but the light source itself, the microlaser, is often assembled from elements residing in columns III and V of the periodic table, and these elements don't sit well on top of silicon. Ming-Chun Tien and Professor Ming Wu of the University of California, Berkeley will report on progress in their lab, where their team has been able to make III-V microlasers (6 microns in diameter and only 200 nm thick) using a wet chemical etch process. Once the microdisk lasers are formed, the lasers' substrate (the indium phosphide [InP] platform on which the indium gallium arsenide phosphide [InGaAsP] lasers were built) is etched away. Then the lasers are floated in a mini-lake of ethanol (which accounts for the word "fluidics" in the name) and moved into position by a patterned array of light from a computer-controlled projector, which they refer to as optoelectronic tweezers (OET). The lasers are held in place over optical waveguides defined in silicon by an applied voltage until the attachment process is complete. Tien says that the microlasers, costing less than 1 cent each, can be positioned on the chip with better-than-quarter-micron accuracy.