Posted in | News | Lighting | Quantum

An Overview of Light-Emitting Mxene Quantum Dots

In a new publication from Opto-Electronic Advances; DOI https://doi.org/10.29026/oea.2021.200077, Researchers led by Professor Jeongyong Kim at the Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea review light-emitting MXene quantum dots.

MXenes have found wide-ranging applications in energy storage devices, sensors, catalysis, etc. owing to their high electronic conductivity and wide range of optical absorption. However, the absence of semiconducting MXenes has limited their applications related to light emission.

Extensively reviewing current relevant research, the authors summarise recent advances in MXene quantum dot (MQD) research on the synthesis, optical properties and applications of MQDs as light emitting quantum materials. Research has shown that quantum dots (QDs) derived from MXene (MQDs) not only retain the properties of the parent MXene but also demonstrate significant improvement on light emission and quantum yield.

The authors provide an overview of light emitting MQDs and their synthesis methods, optical properties, and applications in various optical, sensory, and imaging devices. Future prospects for light emitting MQDs are also discussed to provide insight to help further advance research.

Source: https://compuscript.com/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.