Posted in | News | Laser | Spectroscopy

Researchers Use Laser Spectroscopy Experiments to Understand Atomic and Nuclear Structure of Radioactive Atoms

Researchers at the University of Jyväskylä participated in an international collaboration with research groups from five countries – Belgium, Finland, France, Germany and Russia, applying high-resolution laser ionization of radioactive atoms in a supersonic gas jet to probe the properties of heavy elements. The results have been recently published in Nature Communications.

Credit: Iain Moore, University of Jyväskylä

The new technique applied to actinium

Laser spectroscopy experiments have been used for the first time to obtain a thorough understanding of the atomic and nuclear structure of the short-lived heaviest atoms at the far end of Mendeleev’s periodic table. “The vast majority of the actinide and transactinide elements do not occur in nature and are difficult to produce artificially in weighable quantities,” says Iain Moore, Professor at the University of Jyväskylä. “Performing spectroscopy of these elements therefore necessitated the development of a new, extremely sensitive and accurate technique based on laser ionization spectroscopy of radioactive atoms in a gas jet moving at supersonic velocities,” he adds. This new technique has been applied to study the nuclear structure of actinium atoms produced at the LISOL (Leuven Isotope Separator On-line) facility in Louvain-la-Neuve, Belgium.

Promising new explorations with greater resolution and sensitivity

Actinium, with 89 protons, is the first and eponymous element of the actinide group. It has only one long-lived isotope (227Ac with a lifetime of 21.8 years) limiting our knowledge of the atomic transitions in this element, and thus making laser spectroscopy experiments very difficult. At the cyclotron in Louvain-la-Neuve, actinium atoms were produced in a nuclear-fusion reaction by bombarding a thin gold foil with neon nuclei. The actinium atoms were then stopped in the surrounding argon gas and transported in the cold supersonic jet of a "de Laval" nozzle, a miniaturized version resembling the exhaust of rocket engines, towards a laser interaction zone. In such conditions, resonance laser ionization is used to ionize the atoms and perform spectroscopy studies. Pure ion beams of actinium are finally separated according to their mass to gain isotopic selection and are electrostatically guided to a detector array. "With this new technique, which is generally applicable, the spectral resolution is improved by more than an order of magnitude without loss of efficiency, and detailed experiments now become possible on nuclei produced at a rate of only one atom every ten seconds " says KU Leuven scientist Dr. Rafael Ferrer, who led the experiment.

Source: https://www.jyu.fi/en/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.