Two-Photon LiDAR Technology Improves Depth Resolution

Optica Publishing Group recently published a study on a quantum interference-inspired approach to light detection and ranging (LiDAR) that achieves optical coherence tomography (OCT) depth resolutions without requiring high levels of stability. This increased resolution allows the use of LiDAR for 3D facial recognition, small feature detection, and tracking.

Study: Two-photon interference LiDAR imaging. Image Credit: agsandrew/Shutterstock.com

OCT is a 3D imaging method that gives micron-scale depth resolution in bio-imaging. The optical coherence tomography's resolution exceeds the LiDAR's imaging resolution, which is often limited to millimeter scale resolution because of the impulse response of the detection electronics. However, optical coherence tomography is not feasible in incoherent systems.

Significance of Optical Coherence Tomography Technology in Bio-Imaging

OCT is a 3D imaging technology that obtains depth information from the interference of light sources with short coherence lengths. Due to its capacity to produce an image within a scattering medium, OCT is utilized in many bio-imaging applications, such as cardiology, ophthalmology, dermatology, and oncology.

Every interface within a medium, often biological tissue, produces a reflection that interferes with a reference field. The position of these interference maxima helps calculate the distance light has traveled, the Time-of-Flight (ToF), and the medium depth. In this manner, high-resolution images of tissues or organs are produced.

Optical coherence tomography obtains high-resolution retinal cross-sectional pictures. Layers inside the retina can be distinguished, and the thickness of the retina can be assessed to aid the diagnosis or early detection of retinal disorders and diseases.

Optical coherence tomography testing has become standard for the diagnosis and treatment of the majority of retinal diseases. OCT uses light beams to determine the thickness of the retina. This test uses no radiation or X-rays, and the scan does not harm or cause discomfort to the patient.

Coherence Nature of Optical Coherence Tomography

OCT is an inherently coherent process since it relies on detecting the interference fringes resulting from the optical field's cyclic phase regardless of whether they are detected in the spectral or temporal domain.

As a result, it cannot be used in incoherent systems, such as circumstances in which there is mechanical movement on the wavelength scale throughout the acquisition time. In LiDAR, these conditions frequently prevent interferometric stability from being attained, and even slight variations in air currents might result in a significant phase distortion.

Resolving depth profiles at the millimeter scale and lower is difficult with conventional single photon LiDAR because the detector's timing jitter is in the range of tens of picoseconds or larger for SPADs, limiting the technology.

Using Two-Photon LiDAR Technology to Improve Depth Resolution

The research explores the quantum interference-inspired approach to LiDAR that obtains OCT depth resolutions without requiring high degrees of stability.

The possibility of employing two-photon interference between weak coherent states of light for LiDAR applications was investigated. This could provide OCT's micron-scale depth resolution while simultaneously being immune to phase noise and capable of operating in high-loss settings.

The study used the ability of two photons to become entangled at a beam splitter in an interferometer to quantify two-photon interference by sending one pair into the three-dimensional environment while holding the other in a controlled delay line.

A galvanometer mirror system scans the beam in the transverse plane, and full 3D imaging is produced.

A further measurement was carried out to record each detected photon's individual time tags and investigate the correlations between surrounding pulses up to a decorrelation time.

Important Findings of the Study

The depth imaging system had an effective impulse response of 70 microns. This would make it possible to distinguish between ranging and multiple reflections with significantly higher resolution than with traditional LiDAR systems.

Detecting photon pair correlation-states provides a more accurate measurement of the photon's return time than conventional interference, resulting in a higher depth resolution.

The theoretical depth resolution was as small as approximately 7 microns. The axial resolution can be boosted further by using shorter pulses.

The depth scan was completed in 75 steps with a 50 ms integration time per point, resulting in an image acquisition time of roughly ten hours. However, the proposed two-photon approach decreases the acquisition time to 36s while increasing the amount of photon correlation resources.

Due to second-order dispersion, the 100 fs pulse broadens by about 14 fs during 100 m propagation in air. This can be corrected by either the reference or signal arm and optimized without knowing the propagation distance.

Removing the transverse scanning components in favor of a full-field imaging system can lead to further advancements.

This research paves the way for high-precision LiDAR imaging and ToF sensing devices such as non-line-of-sight imaging and imaging through scattering media.

Reference

Murray, R., & Lyons, A. (2022). Two-photon interference LiDAR imaging. Optics Express, 30(15), 27164-27170. https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-15-27164&id=478802

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Owais Ali

Written by

Owais Ali

NEBOSH certified Mechanical Engineer with 3 years of experience as a technical writer and editor. Owais is interested in occupational health and safety, computer hardware, industrial and mobile robotics. During his academic career, Owais worked on several research projects regarding mobile robots, notably the Autonomous Fire Fighting Mobile Robot. The designed mobile robot could navigate, detect and extinguish fire autonomously. Arduino Uno was used as the microcontroller to control the flame sensors' input and output of the flame extinguisher. Apart from his professional life, Owais is an avid book reader and a huge computer technology enthusiast and likes to keep himself updated regarding developments in the computer industry.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ali, Owais. (2022, July 21). Two-Photon LiDAR Technology Improves Depth Resolution. AZoOptics. Retrieved on April 24, 2024 from https://www.azooptics.com/News.aspx?newsID=27704.

  • MLA

    Ali, Owais. "Two-Photon LiDAR Technology Improves Depth Resolution". AZoOptics. 24 April 2024. <https://www.azooptics.com/News.aspx?newsID=27704>.

  • Chicago

    Ali, Owais. "Two-Photon LiDAR Technology Improves Depth Resolution". AZoOptics. https://www.azooptics.com/News.aspx?newsID=27704. (accessed April 24, 2024).

  • Harvard

    Ali, Owais. 2022. Two-Photon LiDAR Technology Improves Depth Resolution. AZoOptics, viewed 24 April 2024, https://www.azooptics.com/News.aspx?newsID=27704.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.