Superconducting Silicon-Photonic Chip to Enhance Secure Key Rate of Quantum Communication

Integrated quantum photonics (IQP) is a promising platform for realizing scalable and practical quantum information processing. Up to now, most of the demonstrations with IQP focus on improving the stability, quality, and complexity of experiments for traditional platforms based on bulk and fiber optical elements. A more demanding question is: "Are there experiments possible with IQP that are impossible with traditional technology-"

This question is answered affirmatively by a team led jointly by Xiao-Song Ma and Labao Zhang from Nanjing University, and Xinlun Cai from Sun Yat-sen University, China. As reported in Advanced Photonics, the team realizes quantum communication using a chip based on silicon photonics with a superconducting nanowire single-photon detector (SNSPD). The excellent performance of this chip allows them to realize optimal time-bin Bell state measurement and to significantly enhance the key rate in quantum communication.

The single photon detector is a key element for quantum key distribution (QKD) and highly desirable for photonic chip integration to realize practical and scalable quantum networks. By harnessing the unique high-speed feature of the optical waveguide-integrated SNSPD, the dead time of single-photon detection is reduced by more than an order of magnitude compared to the traditional normal-incidence SNSPD. This in turn allows the team to resolve one of the long-standing challenges in quantum optics: optimal Bell-state measurement of time-bin encoded qubits.

This advance is important not only to the field of quantum optics from a fundamental perspective, but also to quantum communications from the application perspective. The team employs the unique advantages of the heterogeneously integrated, superconducting silicon-photonic platform to realize a server for measurement-device-independent quantum key distribution (MDI-QKD).

This effectively removes all possible detector side-channel attacks and thus significantly enhances the security of quantum cryptography. Combined with a time multiplex technique, the method obtains an order-of-magnitude increase in MDI-QKD key rate.

By harnessing the advantages of this heterogeneously integrated system, the team obtains a high secure key rate with a 125 MHz clock rate, which is comparable to the state-of-the-art MDI-QKD experimental results with GHz clock rate. "In contrast with GHz clock rate MDI-QKD experiments, our system doesn't require a complicated injection locking technique, which significantly reduces the complexity of the transmitter," says Xiaodong Zheng, a PhD student in Ma's group and first author of the Advanced Photonics paper.

"This work shows that integrated quantum-photonic chips provide not only a route to miniaturization, but also significantly enhance the system performance compared to traditional platforms. Combined with integrated QKD transmitters, a fully chip-based, scalable, and high-key-rate metropolitan quantum network should be realized in the near future," says Ma.

Read the open access article by Xiaodong Zheng et al., "Heterogeneously integrated, superconducting silicon-photonic platform for measurement-device-independent quantum key distribution," Adv. Photonics 3(5) 055002 (2021), doi 10.1117/1.AP.3.5.055002.

Source: https://spie.org/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.