Posted in | News | Quantum | Microscopy

New Fossils Shed Light on How Snakes Got Their Bite and Lost Their Legs

New fossils of an ancient legged snake, called Najash, shed light on the origin of the slithering reptiles.

Artwork Credit: Raúl O. Gómez, Universidad de Buenos Aires, Buenos Aires, Argentina.

The fossil discoveries, revealed in Science Advances, provide details about how the flexible skull of snakes evolved from their lizard ancestors.

New analyses of the snake family tree have also revealed they possessed hind legs during the first 70 million years of their evolution.

The evolution of the snake body has captivated researchers for a long time - representing one of the most dramatic examples of the vertebrate body’s ability to adapt - but a limited fossil record has obscured our understanding of their early evolution until now.

Dr Alessandro Palci, from the College of Science and Engineering at Flinders University, was part of the international research team that performed high-resolution (CT) scanning and light microscopy of the preserved skulls of Najash to reveal substantial new anatomical data on the early evolution of snakes.

“Snakes are famously legless, but then so are many lizards.  What truly sets snakes apart is their highly mobile skull, which allows them to swallow large prey items. For a long time we have been lacking detailed information about the transition from the relatively rigid skull of a lizard to the super flexible skull of snakes”.

“Najash has the most complete, three-dimensionally preserved skull of any ancient snake, and this is providing an amazing amount of new information on how the head of snakes evolved.  It has some, but not all of the flexible joints found in the skull of modern snakes. Its middle ear is intermediate between that of lizards and living snakes, and unlike all living snakes it retains a well-developed cheekbone, which again is reminiscent of that of lizards.”

Flinders University and South Australian Museum researcher Professor Mike Lee, was also part of the study, and adds “Najash shows how snakes evolved from lizards in incremental evolutionary steps, just like Darwin predicted.”

The new snake family tree also reveals that snakes possessed small but perfectly formed hind legs for the first 70 million years of their evolution.

“These primitive snakes with little legs weren't just a transient evolutionary stage on the way to something better.  Rather, they had a highly successful body plan that persisted across many millions of years, and diversified into a range of terrestrial, burowing and aquatic niches,” says Professor Lee.

The study was led by Fernando F. Garberoglio at Universidad Maimónides in Buenos Aires, with collaborators M.W. Caldwell at University of Alberta, Dr Alessandro Palci and Professor Mike Lee at Flinders University and the South Australian Museum in Adelaide, R.O. Gómez at Universidad de Buenos Aires, R.L. Nydam at Midwestern University AZ; H.C.E. Larsson at McGill University and T.R. Simões at Harvard University.

Source: https://www.flinders.edu.au/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.