Nanophotonics with Surface Plasmons

Nanophotonics with Surface Plasmons

Current developments in optical technologies are being directed toward nanoscale devices with subwavelength dimensions, in which photons are manipulated on the nanoscale. Although light is clearly the fastest means to send information to and from the nanoscale, there is a fundamental incompatibility between light at the microscale and devices and processes at the nanoscale. Nanostructured metals which support surface plasmon modes can concentrate electromagnetic (EM) fields to a small fraction of a wavelength while enhancing local field strengths by several orders of magnitude. For this reason, plasmonic nanostructures can serve as optical couplers across the nano–micro interface: metal–dielectric and metal–semiconductor nanostructures can act as optical nanoantennae and enhance light matter coupling in nanoscale devices.

This book describes how one can fully integrate plasmonic nanostructures into dielectric, semiconductor, and molecular photonic devices, for guiding photons across the nano–micro interface and for detecting molecules with unsurpassed sensitivity.

For more information about this book, or to purchase this book, click here.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this content?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.