Posted in | News | Quantum

Scientists Provide New Insights on DNA Repair Mechanism

New research led by scientists at the University of Essex has given an insight into how the body finds damage in the DNA code to repair it.

From rays of sunlight to harmful tobacco smoke, our bodies are bombarded every single day by a range of environmental toxins which damage our DNA.

Our bodies work hard to find this damage and repair it, but how the damage is found in the first place is one the great unanswered questions in the repair field.

However, new research led by scientists at the University of Essex, has given an insight into how the body finds damage in the DNA code to repair it.

The findings, published in journal Molecular Cell, reveal an important breakthrough in how proteins working together offer a faster, more effective way of finding the damaged DNA.

As lead researcher Dr Neil Kad, from the Department of Biological Sciences, explained, understanding the processes of how the body repairs itself can lead to a greater understanding of cancer and the ageing process, two leading health issues in the UK.

Working in conjunction with researchers Bennett Van Houten at the University of Pittsburgh and David Warshaw at the University of Vermont, USA, scientists at Essex discovered that DNA-repair proteins appear to scan the genome for errors by jumping like fleas between DNA molecules. By tagging the proteins with quantum dots, the researchers were able to watch the proteins at work, trawling around looking for damage which needed repairing.

The researchers tagged two bacterial repair proteins, called UvrA and UvrB, with quantum dots - semi-conductor nanocrystals that light up in different colours - to make it possible to see how they moved. They also stretched the usually clumped DNA into multiple ‘tightropes' to see the process more clearly.

They found that the UvrA proteins randomly jumped from one DNA molecule to the next, holding on to one spot for about seven seconds before hopping to another site. But the real breakthrough came when it was discovered that the search for damage became quicker and more efficient when UvrA formed a complex with UvrB molecules (UvrAB). This new, quicker search cut the total time to check the genome from three hours down to just 13 minutes.

‘This is the first time we have seen how two different proteins working together change the mechanism of search,' explained Dr Kad

The researchers are now exploring the possibility that the complexes sample the shape or chemical configuration of DNA by interacting with it; an error could alter the local DNA structure, changing its handshake with the repair proteins and perhaps triggering a corrective response.

The study was funded by the National Institutes of Health, the Royal Society and University of Pittsburgh Cancer Institute.

Source: http://www.alphagalileo.org/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.