Posted in | News | Optics and Photonics

University of California Researcher Receives Fund for Research on Light Capturing Compounds

David Bocian of the University of California, Riverside will receive more than $1 million over five years as a co-investigator in the Photosynthetic Antenna Research Center (PARC), to be headquartered at Washington University in St. Louis, Mo. The center seeks to better understand natural photosynthetic systems and design more durable human-made compounds for capturing light.

"Research on solar cells during the past 15 years has failed to appreciably increase cell efficiency," said Bocian, a professor of biophysical and materials chemistry, who researches energy conversion systems using a range of analytical techniques. Bocian cites lack of funding for basic research as the reason why today's solar cells have only 6-11 percent energy efficiency.

But there is hope in Congress's recent approval of funding for PARC and 45 similar Energy Frontier Research Centers (EFRCs) through the Department of Energy.

"The precedent in this case is the number of centers funded," Bocian said. "Normally the National Science Foundation calls for proposals and eventually funds three or four centers."

The $277 million allocated for the 46 EFRCs is significant, especially in that it requires no "deliverables" (functioning products) but rather seeks to address basic science questions.

Shiny silicon-wafer cells are extremely brittle, but Bocian explained that the new solar cells would be flexible, and could be integrated with textiles, allowing clothes to act as a walking power source for cell phones and computers.

He hopes to aid the development of what he calls "bio-inspired" antenna systems, which will collect and focus light to power solar cells.

These systems are bio-inspired because they are based on the dynamics of natural proteins. Nature "engineers" rings of light-harvesting complexes, each hosting a certain number of chlorophylls (photosynthetic light-absorbing pigments). Organisms simultaneously absorb light from different wavelength regions, significantly increasing their energy efficiency.

Bocian and his lab (funds will support at least one student and a post-doc each year for the next five years) use resonance Raman spectroscopy and other techniques to study chromophores, light-absorbing molecules. Resonance Raman spectroscopy, Bocian explained, allows his lab to study the vibrational resonance of individual molecules of interest.

Bocian noted that one advantage of the new cells is that they are more amenable to applications where today's solar cells cannot be used.

"Moreover, the main problem with today's solar cells is that they are not cost effective," he said, "and that's what we're hoping to change with this project."

Source: http://www.ucr.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.