New Method to Rapidly Design CdSe Thin-Film Solar Cells

Si-based tandem solar cell is regarded as the most promising strategy to break the theoretical efficiency limit of single-junction Si solar cells. With Si as the bottom cells, the optimal bandgap of top cells is 1.7 eV, which enables high efficiency of ~45% for two-junction tandem solar cells. III-V semiconductors/Si and perovskites/Si tandem solar cells have achieved high efficiency of ~30%, proving the feasibility. However, the stability challenges of perovskite and the high-cost problem of III-V semiconductors largely limit their wide applications. Exploring new stable, low-cost, and bandgap 1.7 eV photovoltaic materials is of great significance in science and broad prospects in technology.

Cadmium selenide (CdSe), a binary II-VI semiconductor, enjoys great potential in the application of Si-based tandem solar cells because of the suitable bandgap of ~1.7 eV, excellent optoelectronic properties, high stability, and low manufacturing cost. Nevertheless, the progress of CdSe thin-film solar cells stays 30 years ago, and there are few systematic studies on CdSe thin-film solar cells in recent years.

Professor Tang Jiang and his team proposed a method of rapid thermal evaporation (RTE) to obtain high-quality CdSe thin films and designed CdSe thin-film solar cells. This study entitled "Rapid thermal evaporation for cadmium selenide thin-film solar cells" was published in Frontiers of Optoelectronics on Dec. 6, 2021.

In this study, the RTE was employed to deposit CdSe thin films, which demonstrate high crystal quality with large grain size and preferred crystal orientation. Meanwhile, the sharp absorption edge at 720 nm indicates CdSe thin film with a direct bandgap of 1.72 eV. The strong photoluminescence with full width at half maximum of 23 nm reveals the CdSe thin films with relatively few defects. Based on the high-quality CdSe thin films, suitable electron transport layer (ETL) and hole transport layer (HTL) were introduced to construct CdSe solar cells. Finally, an efficiency of 1.88% was achieved by designing an optimal configuration of FTO/ZnO/CdS/CdSe/PEDOT/CuI.

This study developed, for the first time, a RTE method to deposit CdSe thin films and provided a systematical characterization of the optoelectric properties. Also, it demonstrated general rules for device design and optimization for CdSe solar cells. It also pointed out the advantages of CdSe thin film and its solar cells. In the future, CdSe solar cells are of high potential in Si-based tandem applications, which is worthy of further study.

Reference: Kanghua LI, Xuetian LIN, Boxiang SONG, Rokas KONDROTAS, Chong WANG, Yue LU, Xuke YANG, Chao CHEN, Jiang TANG. Rapid thermal evaporation for cadmium selenide thin-film solar cells. Front. Optoelectron., 2021, 14(4): 482‒490: https://doi.org/10.1007/s12200-021-1217-1

Source: https://publons.com/publisher/967/higher-education-press

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.