Posted in | News | Optics and Photonics

New Technique can Redefine the Field of Photonics

Photonics, or the science of manipulating light, has various applications in modern electronics--such as in information technology, semiconductors, and health-based devices.

Thus, researchers globally have been focused on finding novel approaches to spur advances in the field of photonics. But, the challenge lies in optimizing the process of "photon generation" as desired, which is crucial to all photonics-based applications.

In a recent study published in Nano Letters, a team of researchers at Daegu Gyeongbuk Institute of Science and Technology (DGIST), led by Professor J.D. Lee, developed a novel mechanism to maximize the efficiency of photon conversion in 2D materials.

The scientists achieved this by exploring a method called "nonlinear second-harmonic generation" (SHG), an optical process wherein two photons with the same frequency interact with a nonlinear material and generate a new photon with twice the energy, thus resulting in frequency doubling.

"The efficient generation of photons is a crucial part of developing photonic devices. In our study, we developed an ultrafast process of photon conversion in an atomistic-layer material to innovate photonics-based applications."

In their study, the scientists focused on a 2D material called tungsten diselenide (WSe2), owing to its intriguing band characteristics. For instance, this material consists of various "resonant points" that sensitively respond to the absorption of light particles called "photons."

Prof Lee says, "We focused on this feature of WSe2 and revealed a new process to convert the "color" in photons through the maximized dual resonant mode."

Based on SHG, the researchers proposed a novel method called "dual-resonant optical sum frequency generation" (SFG), in which they selected two resonant points in WSe2 called A and D excitons, respectively.

Using this method, the researchers found that when WSe2 is irradiated using two excitation pulses (ω1 and ω2), with one of the two pulses (ω1) being tuned to A exciton and their sum frequency (ω1 + ω2) to the D exciton, the signal is 20 times higher than the single-resonant mode!

Not just this, the intensity that was produced by this method was found to be 1 order of magnitude higher than SHG under the same conditions. These findings were then confirmed using various techniques, including density functional theory and optical experiments.

Prof Lee states, "Our proposed dual-resonant SFG method provides new scientific insights into not only nonlinear spectroscopic and microscopic methods but also nonlinear optics and technology using two-dimensional semiconductors."

These findings show tremendous potential for the development of advanced photonic devices. Prof Lee concludes, "Our study can potentially take photonics-based applications to the next level--for example, cheaper diagnostic methods through better optical imaging instruments in the near future."

Source: https://www.dgist.ac.kr/en/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit
Azthena logo

AZoM.com powered by Azthena AI

Your AI Assistant finding answers from trusted AZoM content

Azthena logo with the word Azthena

Your AI Powered Scientific Assistant

Hi, I'm Azthena, you can trust me to find commercial scientific answers from AZoNetwork.com.

A few things you need to know before we start. Please read and accept to continue.

  • Use of “Azthena” is subject to the terms and conditions of use as set out by OpenAI.
  • Content provided on any AZoNetwork sites are subject to the site Terms & Conditions and Privacy Policy.
  • Large Language Models can make mistakes. Consider checking important information.

Great. Ask your question.

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.