Posted in | News | Optics and Photonics

Metalens-Based Optical Microsensors: A New Revolution in Engineering Optics

In a study published in Sensors, researchers experimentally, numerically, and theoretically investigated an optical microsensor based on high-aperture metalens in an amorphous silicon film.

Study: Optical Polarization Sensor Based on a Metalens. Image Credit: MOLPIX/Shutterstock.com

How are Metalenses Revolutionizing Optics?

Manufacturing high-performance compact optical sensors for controlling the polarization of light is a challenging task. Conventional methods of polarization control, such as polarization modulators, waveplates, and linear polarizers, are bulky and need several observations.

There are fast and compact optical polarization sensors, such as polarization-imaging devices, plasmonic and optical on-chip polarimeters, and gyroid photonic crystals-based chiral beam splitters. However, metasurface-based polarization sensors are the more efficient, compact, and cost-effective option.

Metalenses are a flat lens technology created by optical parts concentrating light using metasurfaces. They offer a new range of lightweight lens designs, and their flat surface and reduced thickness help avoid optical distortions common in classic curved refractive lenses.

Advantages of Metalenses

In advanced optics, there has been increased interest in metasurface technology. As a result, extensive research has been conducted on the conceptual frameworks, design, manufacturing, and applications of metasurfaces.

Metasurface antenna arrays permit simultaneous modification of optical properties, such as phase, amplitude, and polarization of electromagnetic waves. In addition to their exceptional control capabilities, metasurfaces are flat, ultrathin, light, and compact.

Metalens has already been used in a variety of advanced technologies, including light-field optical imaging, endoscopy, augmented and virtual reality, and a quantum entanglement optical chip, all of which point to its enormous potential for future applications like machine vision for mini-drones, autonomous and AI robots in agriculture, healthcare, and quantum information technology.

Limitations of Current Metalens Technology

Most metalenses work on the principle of physically isolating individual polarization states. However, these polarization sensors have various limitations, such as the absence of focusing metalens, a high aspect ratio of nanopillars, and registering an optical signal requiring photosensors to be separated in space.

Investigation of Metalens-Based Polarization Microsensor in a Thin Silicon Film

Researchers investigated a metalens of the polarization state of laser light in an amorphous silicon film.

A low aspect ratio, large numerical aperture, and short focal distance metalens with an extremely small diameter (in order of microns) was fabricated on a thin amorphous silicon layer with a 120 m thickness. The metalens was purposefully designed microscopic to speed up the calculations.

The photosensors were clustered around the metalens’ focal point, which focused photons at a distance of 633 nm. The metalens comprised 110 nm wide binary subwavelength diffraction gratings that were sector-shaped and featured grooves and ridges. A circular aperture of radius 4 m generated the incident light field.

The simulation was run with the finite difference time domain approach in the Fullwave software, which used the Maxwell equations’ difference solution to perform the calculation.

Placing one or two intensity photodiodes in the focus plane enabled beam polarization detection. For example, monitoring the central intensity of the focus point allowed for the unequivocal identification of three forms of polarization.

Significant Findings of the Study

Current metasurfaces-based polarization sensors based on metalens lacked a focusing lens and deflected light with varying polarizations at various angles. This resulted in the need for a photosensor matrix and larger sensor sizes. They deflect distinct forms of polarization at varying angles to the optical axis

The polarization sensor investigated in this study realized several polarization states by producing patterns in the metalens focus: left circular polarization, right circular polarization, and linear polarization generated a light ring in focus, a circular focal spot, and an elliptic spot with two sidelobes, respectively.

In the experiment, the values of the focus diameter, the ring diameter, and the distance between the sidelobes were 20%greater than the simulation results. The metalens was positioned in the diverging region of the Gaussian optical vortex, which explained why the focusing spots were larger in the experiment than in the simulation.

The polarization sensor investigated in this study was smaller than 10 microns, focused light at one wavelength distance, and operated on an entirely new concept. The sensor created diffraction patterns in focus along the optical axis rather than deflecting light at varying angles to produce distinct polarizations. This allowed the photosensors matrix to be replaced by one or two photosensors with hundreds of nanometers of the sensing area.

The reported metalens sensor has potential applications in the life sciences, microscopy, and medicine, where precise control of polarization states is needed.

Reference

Kotlyar, V., Nalimov, A., Kovalev, A., & Stafeev, S. (2022) Optical Polarization Sensor Based on a Metalens. Sensors. https://www.mdpi.com/1424-8220/22/20/7870/htm

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Owais Ali

Written by

Owais Ali

NEBOSH certified Mechanical Engineer with 3 years of experience as a technical writer and editor. Owais is interested in occupational health and safety, computer hardware, industrial and mobile robotics. During his academic career, Owais worked on several research projects regarding mobile robots, notably the Autonomous Fire Fighting Mobile Robot. The designed mobile robot could navigate, detect and extinguish fire autonomously. Arduino Uno was used as the microcontroller to control the flame sensors' input and output of the flame extinguisher. Apart from his professional life, Owais is an avid book reader and a huge computer technology enthusiast and likes to keep himself updated regarding developments in the computer industry.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Ali, Owais. (2022, October 18). Metalens-Based Optical Microsensors: A New Revolution in Engineering Optics. AZoOptics. Retrieved on December 05, 2024 from https://www.azooptics.com/News.aspx?newsID=28041.

  • MLA

    Ali, Owais. "Metalens-Based Optical Microsensors: A New Revolution in Engineering Optics". AZoOptics. 05 December 2024. <https://www.azooptics.com/News.aspx?newsID=28041>.

  • Chicago

    Ali, Owais. "Metalens-Based Optical Microsensors: A New Revolution in Engineering Optics". AZoOptics. https://www.azooptics.com/News.aspx?newsID=28041. (accessed December 05, 2024).

  • Harvard

    Ali, Owais. 2022. Metalens-Based Optical Microsensors: A New Revolution in Engineering Optics. AZoOptics, viewed 05 December 2024, https://www.azooptics.com/News.aspx?newsID=28041.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.