Editorial Feature

Applications of Time-Resolved Spectroscopy in Biology

Time-resolved spectroscopy (TRS) is a powerful analytical technique that has found its way into various scientific disciplines. Among these, biology has emerged as a promising domain where time-resolved spectroscopy offers valuable insights into complex biological processes. This article discusses time-resolved spectroscopy in biology, providing a comprehensive understanding of its significance, recent trends, technical details, and recent studies.

Time-Resolved Spectroscopy, Time-Resolved Spectroscopy in Biology, Spectroscopy in Biology

Image Credit: Gorodenkoff/Shutterstock.com

Advantages of Time-Resolved Spectroscopy

In biology, many vital processes happen in milliseconds, microseconds, or even femtoseconds. Time-resolved spectroscopy can capture these fleeting moments with incredible precision. For instance, it can reveal the kinetics of enzymatic reactions, electron transfer in photosynthesis, or protein folding - all in real-time.

Moreover, Time-resolved spectroscopy is not limited to monitoring kinetics alone but also unveils structural changes within biomolecules. This is particularly important in studying protein conformational changes, which play a crucial role in various diseases. Time-resolved spectroscopy can also detect changes in pH, ion concentration, and temperature, offering insights into how these factors affect biochemical reactions. Another crucial advantage of Time-resolved spectroscopy is in drug development and disease studies since it helps understand how drugs interact with their target molecules in real-time. For instance, it has applications in cancer research, where it can monitor the dynamics of cell proliferation and migration.

Recent Trends in Time-Resolved Spectroscopy in Biology

Recent developments have seen the integration of various spectroscopic techniques with Time-resolved spectroscopy, allowing for a more comprehensive understanding of biological processes. Combining Time-resolved spectroscopy with other methods like NMR, X-ray crystallography, and electron microscopy provides a multi-dimensional view of complex biological systems.

Similarly, single-molecule Time-resolved spectroscopy has gained momentum, enabling researchers to monitor individual molecules and observe their behavior in great detail, especially in studying biomolecular interactions and conformational changes.

Another emerging trend is combining Super-resolution microscopy with Time-resolved spectroscopy to achieve spatial resolutions far beyond the diffraction limit. This has opened new horizons in studying subcellular structures and cellular processes, allowing researchers to visualize the previously unseen.

Recent trends are leaning towards in vivo applications of Time-resolved spectroscopy as well. This involves the non-invasive monitoring of biological processes within living organisms, making it a potential game-changer in fields like neuroscience, pharmacology, and medical diagnostics.

How Time-Resolved Spectroscopy in Biology Works

Time-resolved spectroscopy relies on the interaction between matter and electromagnetic radiation. Pluses of light as brief as femtoseconds are generated in the form of ultra-short laser pulses, allowing the capture of ultrafast events. A laser pulse is directed at the biological sample, which interacts with the sample, inducing changes that affect the properties of the probing light, such as its wavelength, polarization, or intensity.

A second pulse of light, often referred to as the probe pulse, is used to measure the changes in the properties of the initial pulse. The time delay between the pump (excitation) and probe pulses is precisely controlled. Hence, the data collected is analyzed to reconstruct the temporal evolution of the sample's properties, providing insights into the dynamic processes taking place in the biological system.

Recent Research in Time-Resolved Spectroscopy

In a 2021 study, researchers explored the applications of Time-resolved spectroscopy in the field of biology, focusing on optogenetic channels, specifically channelrhodopsins (ChRs) and anion channelrhodopsins (ACRs). They investigated the photocycle of the natural ACR, Guillardia theta Anion Channelrhodopsin-1(GtACR1), and compared it with the well-studied ChR (Chlamydomonas reinhardtii Channelrhodopsin-2), CrChR2. These are specific types of proteins or channelrhodopsins. They conducted time-resolved UV/VIS and FTIR spectroscopy to monitor the dynamic molecular processes during the photocycle of GtACR1.

The study revealed the absence of a light-adapted state in GtACR1, distinguishing it from CrChR2. GtACR1 demonstrated higher peak currents and reduced inactivation, which are attributed to its preexisting tunnel and the absence of a syn-photocycle. The research provided insights into the molecular mechanisms of GtACR1's channel gating and its differences from CrChR2, enhancing the understanding of optogenetic tools' design and applications in biology.

Future Prospects of Time-Resolved Spectroscopy

The future prospects of Time-resolved spectroscopy in biology are exceptionally promising. Time-resolved spectroscopy is poised to revolutionize the study of complex biological processes, offering invaluable insights and applications. As technology advances and research in this field evolves, several exciting developments can be anticipated, including enhanced multimodal integration, as Time-resolved spectroscopy combines with other advanced spectroscopic techniques like NMR, X-ray crystallography, and electron microscopy. This integration will provide a more comprehensive understanding of complex biological systems.

Similarly, the shift towards in vivo applications involving non-invasive monitoring of biological processes within living organisms holds immense potential in fields such as neuroscience, pharmacology, and medical diagnostics. These advancements will collectively shape and enhance our understanding of biological processes, offering new avenues for research and applications in biology.

More from AZoOptics: Raman Spectroscopy for Label-Free Chemical Analysis

References and Further Reading

Dreier, M. A., Althoff, P., Norahan, M. J., Tennigkeit, S. A., El-Mashtoly, S. F., Lübben, M., ... & Gerwert, K. (2021). Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin. Communications Biology. https://doi.org/10.1038/s42003-021-02101-5

Schmitt, M., Dietzek, B., Hermann, G., & Popp, J. (2007). Femtosecond time‐resolved spectroscopy on biological photoreceptor chromophores. Laser & Photonics Reviews. https://doi.org/10.1002/lpor.200710005

Gupta, B. K., Rathee, V., Narayanan, T. N., Thanikaivelan, P., Saha, A., Govind, ... & Ajayan, P. M. (2011). Probing a Bifunctional Luminomagnetic Nanophosphor for Biological Applications: a Photoluminescence and Time‐Resolved Spectroscopic Study. https://doi.org/10.1002/smll.201100441

Masuch, R., & Moss, D. A. (2003). Stopped flow apparatus for time-resolved Fourier transform infrared difference spectroscopy of biological macromolecules in 1H2O. Applied spectroscopy. https://doi.org/10.1366/000370203322554581

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

Taha Khan

Written by

Taha Khan

Taha graduated from HITEC University Taxila with a Bachelors in Mechanical Engineering. During his studies, he worked on several research projects related to Mechanics of Materials, Machine Design, Heat and Mass Transfer, and Robotics. After graduating, Taha worked as a Research Executive for 2 years at an IT company (Immentia). He has also worked as a freelance content creator at Lancerhop. In the meantime, Taha did his NEBOSH IGC certification and expanded his career opportunities.  


Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Khan, Taha. (2023, November 13). Applications of Time-Resolved Spectroscopy in Biology. AZoOptics. Retrieved on July 24, 2024 from https://www.azooptics.com/Article.aspx?ArticleID=2503.

  • MLA

    Khan, Taha. "Applications of Time-Resolved Spectroscopy in Biology". AZoOptics. 24 July 2024. <https://www.azooptics.com/Article.aspx?ArticleID=2503>.

  • Chicago

    Khan, Taha. "Applications of Time-Resolved Spectroscopy in Biology". AZoOptics. https://www.azooptics.com/Article.aspx?ArticleID=2503. (accessed July 24, 2024).

  • Harvard

    Khan, Taha. 2023. Applications of Time-Resolved Spectroscopy in Biology. AZoOptics, viewed 24 July 2024, https://www.azooptics.com/Article.aspx?ArticleID=2503.

Tell Us What You Think

Do you have a review, update or anything you would like to add to this article?

Leave your feedback
Your comment type

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.