New Tool Allows for Higher Sensitivity at Reduced Complexity and Cost

Scientists at Stanford University and Japan's National Institute of Informatics have created a new highly sensitive infrared spectrometer. The device converts light from the infrared part of the spectrum to the visible part, where the availability of superior optical detectors results in strongly improved sensing capabilities. The research will appear in the Nov. 24 issue of Optics Express, the Optical Society's open access journal. The new spectrometer is 100 times more sensitive than current commercial optical spectrum analyzers used in industrial applications such as optical communication, semiconductor microelectronics and forensic analysis.

Summary

Current spectrometers being used on the market today cover a wide spectral range, allow for moderately fast wavelength sweeps, have a good spectral resolution and don't require cryogenic cooling. However, the sensitivity of these instruments is limited, making them unsuitable for capturing single-photon-level spectra at telecommunication wavelengths. Cryogenic cooling can increase the sensitivity of these devices, yet reduces the usefulness for industrial applications. One possible solution is to up-convert near-infrared to visible light in a nonlinear medium. The up-converted photons can then be detected using a single-photon detector for visible light. The authors use a single-photon counting module, which results in 100 times better sensitivity. They implemented the frequency conversion via sum-frequency generation in a periodically poled lithium niobate waveguide, which can be thought of as combining two low-energy photons to get one high-energy photon.

Key Findings

  • The up-conversion based spectrometer's sensitivity is 100 times higher compared to current commercial optical spectrum analyzers.
  • Cryogenic cooling is not required for increased sensitivity, making the device practical for a variety of industrial applications.
  • The cost and system complexity of the spectrometer is reduced because it only uses one single-photon detector instead of an array of detectors.

Paper

"Waveguide-Based Single-Pixel Up-Conversion Infrared Spectrometer," Optics Express, Vol. 16, Issue 24.

For a copy of the paper, please e-mail [email protected].

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.