Posted in | News | Laser | Optics and Photonics

Researchers Develop More Accurate Measurements of MEH-PPV Polymer’s Amplification of Light

Researchers from North Carolina State University have developed more accurate measurements of how efficiently a polymer called MEH-PPV amplifies light, which should advance efforts to develop a new generation of lasers and photonic devices.

“By improving our understanding of this material, we get closer to the longstanding industry goal of using MEH-PPV to create cheaper, more flexible photonic technologies,” says Dr. Lewis Reynolds, a teaching associate professor of materials science and engineering at NC State and senior author of a paper describing the research. MEH-PPV is a low-cost polymer that can be integrated with silicon chips, and researchers have long sought to use the material to convert electricity into laser light for use in photonic devices such as optical amplifiers and chemical sensors.

At issue is MEH-PPV’s “optical gain,” which is a way of measuring how effectively a material can amplify light. Understanding a material’s optical gain is essential to laser development.

Researchers determine the optical gain of MEH-PPV by pulsing laser light into the material and measuring the light that the MEH-PPV then produces in response. The NC State team used extremely short laser pulses – 10 laser pulses per second, with each pulse lasting only 25 picoseconds. To get a grasp of how short those pulses were, it’s worth noting that a picosecond is one trillionth of a second.

Previous efforts to determine MEH-PPV’s optical gain produced inaccurate results because they used laser pulses that lasted one thousand times longer.

“The longer pulses caused thermal degradation in the MEH-PPV, meaning they led to structural and molecular changes in the material,” says Dr. Zach Lampert, a former Ph.D. student at NC State and lead author of the paper. “Essentially, the longer laser pulses were heating the polymer. We were able to minimize these thermal degradation effects, and get a more accurate measurement, by using the picosecond pulses.”

Source: http://www.ncsu.edu/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.