Posted in | News | Imaging

New Images Reveal Surface Structures of Comet 67P/Churyumov-Gerasimenko

Surface structures are becoming visible in new images of comet 67P/Churyumov-Gerasimenko taken by the scientific imaging system OSIRIS onboard the European Space Agency's Rosetta spacecraft.

Images of comet 67P/Churyumov-Gerasimenko taken on July 14, 2014, by the OSIRIS imaging system aboard the European Space Agency's Rosetta spacecraft have allowed scientists to create this three-dimensional shape model of the nucleus. Image credit: ESA/Rosetta/MPS for OSIRIS Team/MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The resolution of these images is now 330 feet (100 meters) per pixel. One of the most striking features is currently found in the comet's neck region. This part of 67P seems to be brighter than the rest of the nucleus.

As earlier images had already shown, 67P may consist of two parts: a smaller head connected to a larger body. The connecting region, the neck, is proving to be especially intriguing. "The only thing we know for sure at this point is that this neck region appears brighter compared to the head and body of the nucleus," says OSIRIS Principal Investigator Holger Sierks from the Max Planck Institute for Solar System Research in Germany. This collar-like appearance could be caused by differences in material or grain size, or could be a topographical effect.

Even though the images taken from a distance of 3,400 miles (5,500 kilometers) are still not highly resolved, the scientists are remotely reminded of comet 103P/Hartley, which was visited in a flyby by NASA's EPOXI mission in 2010. While Hartley's ends show a rather rough surface, its middle is much smoother. Scientists believe this waist to be a gravitational low: since it contains the body's center of mass, emitted material that cannot leave the comet's gravitational field is most likely to be re-deposited there.

Whether this also holds true for 67P's neck region is still unclear. Another explanation for the high reflectivity could be a different surface composition. In coming weeks, the OSIRIS team hopes to analyze the spectral data of this region obtained with the help of the imaging system's filters. These can select several wavelength regions from the reflected light, allowing scientists to identify the characteristic fingerprints of certain materials and compositional features.

At the same time, the team is currently modeling the comet's three-dimensional shape from the camera data. Such a model can help to get a better impression of the body's shape.

Rosetta will be the first mission in history to rendezvous with a comet, escort it as it orbits the sun, and deploy a lander to its surface.

Rosetta's Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Gottingen; French National Space Agency, Paris; and the Italian Space Agency, Rome. The Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, manages the U.S. participation in the Rosetta mission for NASA's Science Mission Directorate in Washington. Rosetta carries three NASA instruments in its 21-instrument payload.

Source: http://www.jpl.nasa.gov/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

Leave your feedback
Your comment type
Submit

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.